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2. Introductory Material 
 

2.1 Problem Statement 

Over the last decade, the development of Cyber-Physical Systems (CPS) and Internet of Things 

(IoT) has been in full force because of the multitude of advantages it can bring to everyday life. 

Despite many years of research, we are still at the infancy of IoT and Industry 4.0 capabilities. 

IoT can be used for a wide range of products such as SmartAg, connected autonomous vehicles, 

smart grids, and AR/VR. Powered with the capabilities of 5G, IoT promises to change every 

aspect of our lives. But to continue with this pace of innovation, researchers need space to run 

experiments and gather real-world data. 



 

Figure 1: Use Case Diagrams 

Iowa State University has decided to explore this field with the development of the CyWi lab. 

This lab consists of a multi-node testbed located on the Iowa State campus and is available to 

researchers and testers to run their experimentation code. This lab features the most 

bleeding-edge wireless innovation platforms as well as emerging wireless solutions. It also 

features 5G wireless for new learning, teaching, and researching across the globe. 

 

2.2 Operating Environment 
The CyWi’s testbed is located in 3038 Coover Hall at Iowa State University (ISU). This is a 

climate-controlled room with a keycard secured door. The only people allowed into the lab 

room are those with keycards: the professor/client, the ISU Electronics Technology Group 

(ETG), and a handful of researchers. Users can access the testbed via the remote web interface, 

never via physical access to the lab. One wall has windows facing west but the blinds will be 



closed so sunshine never touches the equipment. While it is not expected for the hardware to 

experience anything but optimal operating conditions, our web-based service will be exposed 

to the Internet so cyber attacks, such as DDoS, are possible.  

 

2.3 Intended Users and Intended Uses 
The CyWi testbed is intended for two general types of users: students and researchers. 

 

Students learn about wireless signals and protocols in their courses via lectures, assignments, 

and small projects. Theoretical knowledge is crucial. However, building upon that foundation 

with extensive lab experience configuring real-world hardware will improve students’ 

understanding of the subject matter. Implementing wireless topologies such as mesh, star, and 

point-to-point could inspire future IoT developers. Comparing Zigbee and Bluetooth Low Energy 

performance, for example, over assorted ranges, signal strengths, and conditions will extend 

students’ knowledge of technology strengths and limitations. CyWi will provide students the 

opportunity to experiment with a variety of popular, existing wireless technologies and to 

expand their understanding in a safe environment. 

 

Researchers, on the other hand, will appreciate the cutting-edge communication technologies 

represented by the CyWi testbed. Access to powerful and configurable software-defined radios 

(SDRs) will allow researchers to study a wide spectrum of new heterogeneous networks and 

explore exciting innovative ideas. Researchers will evaluate performance monitoring and 

statistics after each experiment to determine the feasibility of their chosen path. Emerging 

technologies such as 5G, SmartAg, augmented reality, virtual reality, and Internet-of-Things 

(IoT) will generate opportunities for decades of continuous communications development. As 

Figure 2 shows, CyWi is particularly equipped to handle experiments of various throughput and 

latency specifications. 



 

Figure 2: Bandwidth to Latency Relations 

 

2.4 Assumptions and Limitations 

2.4.1 Assumptions 

● Environmental conditions in the lab room will remain nominal for electronics. 

● Internet access will be sufficient and reliable. 

● Outside wireless signal interference will be negligible. 

● Users will be students and researchers so they will be somewhat familiar with testbeds. 

● Users will participate in reporting bugs if or when they arise for continued 

improvement. 

● ISU Electrical and Computer Engineering department will publish or advertise that this 

testbed is ready for students and researchers to use. 

 

2.4.2 Limitations 

● All software used must be open-source. 

● Lab room has space for only 110 total nodes. 

● Budget is a factor so the amount of SDRs is limited. 

● Two semesters is the maximum time to spend designing and developing this project. 

● Some elements of this project are new to us and required extensive research 



3. Specifications and Analysis 

 

3.1 System Design

 

Figure 3: High Level Block Diagram 

 



Our testbed design features two separate sets of wireless devices: software-defined radio (SDR) 

nodes and CPS (cyber-physical system) motes. Both sets of nodes are mounted to a 11x10 grid 

of square ceiling tiles -- each tile measuring two feet in width and length. To facilitate remote 

configuring of the nodes, USB cables connect each node to one of two node controllers via 

intermediate USB hubs. The node controllers are then connected to a networking switch via 

Ethernet cables and ultimately to our Internet-connected server. 

 

SDR nodes account for a majority of the project budget so at the moment we are limited to 

three SDRs which will be sufficient to run interesting 5G experiments. We have settled on the 

Ettus USRP B210 platform due to its flexibility, reliability, and compatibility with the 

OpenAirInterface framework. These SDRs are capable of generating, transmitting, and receiving 

signals at up to 6 GHz. OpenAirInterface is a framework that provides software and tools to 

research 5G radio access networks. 

 

CPS motes are relatively inexpensive so we’ve purchased and mounted 60 Texas Instruments 

LAUNCHXL-CC26X2R1 development kits. These devices are capable of implementing multiple 

wireless protocols including Wi-Fi, Bluetooth Low Energy, and IEEE 802.15.4 standard protocols 

such as Thread, Zigbee, and Sub-1 GHz. These development kits support TI-RTOS (an 

open-source real time operating system under a BSD-like license) and implement the 

SimpleLink SDK platform which provides well-documented hardware drivers and stacks. During 

our search for suitable CPS motes, we compared this Texas Instruments development kit with 

others developed by Qualcomm, NXP, and Nordic but none of those were able to offer a 

powerful MCU, open documentation, and community support at the right price. 

 

Node controllers are installed on the ceiling tile grid to provide access to our SDR and CPS 

motes. Node controllers are mini PCs running Linux/GNU that provide configuration and 

communication to the nodes. The SDR nodes, in particular, need powerful node controllers to 

implement their software radio components. For this task, we chose the Intel NUC8. We 

carefully analyzed a variety of NUC7 and NUC8 mini PCs as well as the cheaper yet much less 

powerful MintBox. 

 

One server hosts open-source software designed to allow remote access, store data, and 

interact with the node controllers. After discussing with ETG what the best choice for a server 

machine would be, we decided on a powerful Dell workstation. This machine offered us a Xeon 

processor and 32GB of RAM, perfectly suited to handle multitasking. Additionally we added two 

2TB enterprise hard drives to be set up in a RAID1 configuration. The RAID setup was a critical 

part of the overall robustness of the test bed. We planned on implementing the Emulab 

software platform for many of the testbed features but ultimately could not get it working in 

the allotted time of the project. More on this and other alternative design decisions can be 



found in Appendix II. Instead, the server now hosts Web, SSH, and FTP services. Anyone can 

view the website, but those wishing testbed access can request a username and gain login 

ability to the server. Once logged into the server, they can SSH to the node controllers and 

begin experiments. Each user has a home directory on the server where they can temporarily 

store any experiment results before FTPing them off site. 

 

The CyWi Innovation Lab satisfies the following functional and non-functional requirements: 

3.2 Functional Requirements 

● Users have remote access to the lab 
● Users have the ability to flash wireless devices 
● Experiment output data can be exportable 
● Radio attenuation is configurable 

3.3 Non-Functional Requirements 

● Software is open-source 
● Only registered users have remote access 
● Testbed availability is shown to the users 
● System has backup redundancy 

 

The CyWi Innovation Lab works in accordance with several standards including: 

● Ethernet (IEEE 802.3) 

● Wi-Fi (IEEE 802.11) 

● Bluetooth (IEEE 802.15) 

● Thread, Zigbee, and Sub-1 GHz (IEEE 802.15.4) 

 

3.4 Design Analysis 
At the start of the project, our goal was to have 110 CPS motes and 20 SDRs but the initial 

funding was not as rich as we had hoped. We had to scale back to 60 CPS motes and 3 SDRs for 

the time being. More nodes can always be added as time goes by. Since we currently have at 

least one of each unit, adding more quantity of each device (additional 60 CPS motes and 17 

SDRs) is simply duplicating what we currently have. Whether we have 20 or 110 motes, the 

server-side of the system will remain mostly the same. Every server component (such as SSH, 

FTP, Access Control, etc) will need to be implemented regardless of node quantity so project 

feasibility is established. In fact, it is easier to test each subsystem with only a couple devices at 

one time. We have sufficient nodes to provide a proof-of-concept for the project.  

 



Our testbed hardware selections are based on our solid research spanning many vendors and 

products. For our CPS motes, we selected the Texas Instruments LAUNCHXL-CC26X2R1 

development kits. This TI development board supports open-source software and offers 

excellent documentation, both of which will allow our testbed to be more accessible. The next 

piece of hardware that we picked was the node controller. Our node controllers are mini PCs, 

specifically Intel NUC8s. Size is a factor because these PCs need to be mounted above the 

ceiling tile, but the PCs also need to be powerful enough to run several wireless devices at a 

time. SDRs are resource-demanding. The decision to go with the  NUC8i7BEH was based 

primarily on its high performance but this was balanced with its price. After determining that 

the tasks these node controllers will be performing were going to be more CPU than GPU 

intensive, we placed more weight on the cost-to-performance ratio of the CPU rather than the 

GPU.  We compared this CPU ratio across six different Intel NUC models and concluded that the 

NUC8i7BEH was the best choice for our application. 

 

Overall, we are pleased with our hardware choices. We feel that a major strength of our 

decision process has been selecting our node controllers. The model we decided on after 

conducting research is both significantly cheaper and higher in performance than the NUC our 

client had originally suggested. One weakness of the project has been that we underestimated 

just how much time would be spent researching. 

 

4. Implementation 

4.1 Local Area Network 

The CyWi testbed is located at 3038 Coover Hall and is on the Iowa State network. We have 

installed a border router to segregate our traffic from Iowa State and a smart switch to provide 

us with more ports for devices. This means that to reach our private 192.168.1.0/24 network, 

users must first be on Iowa State’s private 10.29.0.0/16 network. 

 

The router has port forwarding configured to forward all HTTP, SSH, and FTP traffic straight to 

the CyWi server. The node controllers only have 192.168.1.0/24 IPs so they are only reachable 

through SSH via the CyWi server. This lets us simplify by keeping the user profiles entirely on 

the server while the node controllers can have generic user accounts. All our internal IPs are 

static for stability during and after node controller firmware/software flashes. 

4.2 OpenAirInterface (OAI) 

We have installed OAI on the SDR node controllers which run on Linux OS. In order to install 

OAI, we have to install Ubuntu 16.04.6 along with the 4.15 low latency kernel. After going 



through the process of setting up OAI, we have decided to make an installation guide for 

students who continue on our work, which can be found in appendix.  

 

 

Figure 4: Connection between eNB and UE 

 

4.3 Interface Specifications 
To fully test our system, we have to look at each component to determine how it interfaces 

with the others. We can begin by defining the interfaces between our four types of physical 

hardware: CPS motes, SDR nodes, Node Controllers, and server. Then we can define the 

interfaces of our various services: web server, SSH server, FTP server, access control system. 

 

The physical connections are as follows. The server connects to an Ethernet switch in the lab 

room with Cat5 cable. Each of the Node Controllers also have an Ethernet connection to the 

switch. All the Node Controllers and the server will be on the same VLAN as we have no need 

for more complicated switching or routing. Up to twenty CPS motes will connect to one Node 

Controller via USB cables and a USB hub. 

 

Since the CPS motes run with an operating system and are able to communicate wirelessly, 

they are not as reliant on host PCs as the SDR nodes are. In fact, the Node Controller will be 

transparent to the user in regards to using CPS motes. Configurations are completely up to the 

experiment owner but could include initial RF signal power, which radios to initialize, which TI 

software stacks to enable, etc. If live access to individual CPS motes is required, the network 

session will flow from server, to Node Controller, to CPS mote. Testing CPS motes will involve 

trying the following functionalities: live access to the mote, and transmit and receive test data. 



 

SDRs need a host PC to function so each SDR will be paired with a Node Controller. 

OpenAirInterface will be the software platform we will support for mobile network 

experimentation and the SDRs will function as cellular base stations. Testing the SDR functions 

will involve logging into the Node Controller via SSH to gain access to the Linux operating 

system. From there, we will run OpenAirInterface and run several of its core functions which 

will include programming the SDR’s FPGA to send and receive multiple different types of RF 

signals and receiving them on another SDR. If both SDRs can transmit and receive across 

multiple frequencies, we can be sure that the user experience will be a good one. Finally, we 

must gather experiment logs (such as traffic performance) and send them back to the user via 

web server. 

 

4.4 Hardware and Software 
Hardware used for testing: 

● Texas Instrument CC26X2R1 Launchpad 

● Ettus Research USRP B210 SDR 

● Ettus Research Vert2450 Antenna 

● Intel NUC8 

 

Software used for testing: 

● Performance analysis tool built into Chrome 

● SimpleLink testing software 

● OpenAirInterface (OAI) testing tools 

● Code Composer Studio. 

● TI-RTOS 

5. Testing 

5.1 CPS Motes 

Attenuation testing 

For this test bed to work correctly, the motes need to only communicate with their neighbors 

when running on minimum power. They also must communicate across the whole room when 

running on maximum power. We needed to test certain attenuation values on the motes to 

make sure that they can not reach too far running on minimum power. This testing was done by 

sending 1000 packets at minimum power from different distances starting from 1 foot and 

increasing the distance by 1 foot every time. We continued this until packets were no longer 

being received. The last test that needed to be done was to test if the motes could 

communicate across the room at maximum power.  



Result 

We found that the optimal attenuation for all of the motes was 20dbm. This allowed us to have 

an average packet loss of 5-10% within the range of 2-4 feet and the packet loss would spike up 

to around 50% when the range was increased to 5 feet. Packets were no longer being received 

after a distance of 8 feet. Packets were received with 1% packet loss at maximum power across 

the whole room.  

 

Figure 5: TI Motes at Minimum Power 

 

5.2 SDR Nodes 

Attenuation 

Before we attempt to determine the right attenuation, we first find the configuration that 

works with USRP B210 the best under stable condition. Configuration and measurement values 

were empirical, further explanations about the reason behind it is likely to be related to radio's 

FPGA which is beyond our level. As soon as the configuration values were optimized, we then 

further tested different attenuations (i.e. from 6dB to 30dB) to find out an optimal effective 

gain value that can realize multihop networks in the lab.  

 

OpenAirInterface (OAI) 

In order to test our SDR, we use OAI to mimic cellular devices communication in an enclosed 

environment. OAI allowed us to emulate standard compliant network functions to establish LTE 

connection between a base station and a user equipment. After that, we used large sample 



ping tests (e.g. 500 icmp packets) to determine packet delivery ratio via the wireless 

connection.  

 

Result 

The optimal attenuation we should add to a point-to-point wireless connection is 18dB which 

results in 9dB attenuator at each radio front end. With 9dB attenuator connected between 

each B210 RX/TX output and VERT2450 3dBi antenna, we managed to model large scale 

wireless performance at the minimum power under stable operation as shown in the graph 

below. Note that we do have the flexibility to scale down the network size by tuning up the 

transmission power, which gave packet delivery ratio of 90% and above at any point in the lab 

(i.e. single hop).  

 

 

Figure 6: SDR at Minimum Power 

 

5.3 Server 

Website 

The server runs Apache and hosts its own website for CyWi details such as getting started 

instructions, hardware available, tutorials, and other documentation. Testing the web site 

simply involved using the browser to view the website from on campus as well as from the Iowa 

State VPN. It is available and responsive. 



 

Figure 7: CyWi Testbed Website 

 

SSH Access 

The server also provides access via SSH from within the Iowa State campus or VPN. To test that 

it works, we simply logged in and were able to work. SSH is how we configured a lot of the 

project so this test was ingrained with the rest of development. Nevertheless, we tested that 

other users were working as well, as the figure below shows. 
 

cywi@cywi-server:~$ ssh localhost -l student 

student@localhost's password: 



Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 5.0.0-37-generic x86_64) 

 

 * Documentation:  https://help.ubuntu.com 

 * Management:     https://landscape.canonical.com 

 * Support:        https://ubuntu.com/advantage 

 

 

 * Canonical Livepatch is available for installation. 

   - Reduce system reboots and improve kernel security. Activate at: 

     https://ubuntu.com/livepatch 

 

106 packages can be updated. 

0 updates are security updates. 

 

Your Hardware Enablement Stack (HWE) is supported until April 2023. 

Last login: Tue Dec 10 16:10:56 2019 from 10.26.40.41 

student@cywi-server:~$ pwd 

/home/student 

student@cywi-server:~$ ls 

examples.desktop 

student@cywi-server:~$ 

Figure 8: SSH to the CyWi Server with Multiple Users 

 

Node controllers are accessed via SSH through the CyWi server. The figure below shows that a 

user logged into the cywi-server can easily SSH into a neighboring node controller. 
 

cywi@cywi-server:~$ ssh cywi-nc-sdr01 -l nuc7 

nuc7@cywi-nc-sdr01's password: 

Welcome to Ubuntu 16.04.6 LTS (GNU/Linux 4.15.0-46-lowlatency x86_64) 

 

 * Documentation:  https://help.ubuntu.com 

 * Management:     https://landscape.canonical.com 

 * Support:        https://ubuntu.com/advantage 

 

58 packages can be updated. 

10 updates are security updates. 

 

New release '18.04.3 LTS' available. 

Run 'do-release-upgrade' to upgrade to it. 

 

Last login: Wed Dec 11 05:01:07 2019 from 192.168.1.39 

nuc7@cywi-nc-sdr01:~$ 

Figure 9: SSH to a Node Controller 

 

FTP Transfer 

Finally, the CyWi server also hosts an FTP server to transfer test results and documents. To test 

that the FTP server has been setup correctly, we used FileZilla on a personal laptop logged into 



the Iowa State network via VPN to login to CyWi and download a test file from CyWi. The 

download had no errors and completed quickly. 

6. Market Survey 

We researched several existing wireless testbeds in our project’s initial stages to define what a 

testbed is and how its elements must perform together to comprise a system. One such 

platform is Powder located in Salt Lake City, Utah. Powder’s goal is to provide a wireless testing 

environment that spans city-wide areas including a downtown area, a residential 

neighborhood, and the University of Utah campus. Researchers are able to build mobile 

wireless networks using 4G and MIMO technologies. One Powder testbed cluster is built using 

the well-known, open-source Emulab environment.  

 

Orbit is another wireless testbed we researched. It is managed by several universities in the 

New York and New Jersey region and has been around since 2005. The project hosts multiple 

testbeds of various sizes from 2x2 radio node grids up to a 20x20 grid. The CyWi lab will start 

out with a maximum of 11x10 nodes. Both Powder and Orbit have the same experiment 

lifecycle including specifying the architecture, parsing the specs to a server, allocating 

resources, configuring the nodes, and gathering logs. The CyWi lab will have the same general 

functions. However, our focus will be on providing a platform specifically for IoT and 5G 

experimentation. 

7. Project Tracking Procedure 

The following Gantt chart shows the development schedule that we tried to follow during the 

second semester of the project. 





8. Closure Material 

8.1 Conclusion 

Technological innovation has been steadily increasing over the last few decades. The future is 

fast approaching and Cyber-Physical Systems, the Internet of Things, and 5G wireless will soon 

be mainstream. These highly disruptive technologies will change every facet of modern life 

including healthcare, home safety, industrial automation, transportation, education, social 

connectivity, entertainment, and more. 

 

Such a social seachange cannot be made possible without the continued efforts of researchers. 

The Iowa State University CyWi innovation lab aims to provide students and researchers the 

resources to learn about emerging technologies and to push the boundaries of possibility 

forward. Registered users will have a well-documented matrix of SDR and CPT/IoT nodes at 

their disposal with the ability to run custom experiments across several wireless protocols. 

Exportable experiment results will allow researchers to take their data offline for further 

analysis. Innovating in such a lab environment will speed up the next technological revolution. 
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Appendix I: Operating Manual 

Connecting to the Server 

To see the CyWi website, go to http://10.29.163.167 in your browser while on the Iowa State 

network. Instructions there tell you who to email to request a username. 

 

Once you have a user/pass, use a SSH client (such as Putty or similar program) to login to 

cywi-server at 10.29.163.167 on the standard SSH port 22. 

 

After you are connected to cywi-server, you may SSH into a neighboring node controller by 

simply doing the following. Instead of searching for a list of hostnames or IPs, type  

ssh cywi<TAB> to populate the list of neighboring node controllers. Each one has been added 

to the cywi-server hosts file. 
 

cywi@cywi-server:~$ ssh cywi-nc-sdr01 -l student 

student@cywi-nc-sdr01's password: 

 

student@cywi-nc-sdr01~$ 

 

For FTP access to CyWi, use an FTP client (such as Filezilla) while on the Iowa State network to 

login to 10.29.163.167 on the standard FTP port 21. From there, you can browse through the 

folders and download what you need. 

Installation Guide on OAI 

1. Install the right linux image & headers for OAI 

● ~ sudo apt-get install linux-image-4.15.0-50-lowlatency  

● ~ sudo apt-get install linux-headers-4.15.0-50-lowlatency 

● ~ dpkg -l | grep linux-image 

● ~ sudo apt-get remove --purge *<any other linux image in list>* 

● ~ dpkg -l | grep linux-headers 

● ~ sudo apt-get remove --purge *<any other linux headers in list>* 

● ~ sudo update-grub 

● ~ sudo reboot --r now 

2. Install UHD driver to support USRP SDR 

● ~ sudo apt-get update 

● ~ sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev 

libtool libusb-1.0-0 libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin 



libfftw3-dev libfftw3-doc libcppunit-1.13-0v5 libcppunit-dev libcppunit-doc 

ncurses-bin cpufrequtils python-numpy python-numpy-doc python-numpy-dbg 

python-scipy python-docutils qt4-bin-dbg qt4-default qt4-doc libqt4-dev 

libqt4-dev-bin python-qt4 python-qt4-dbg python-qt4-dev python-qt4-doc 

python-qt4-doc libqwt6abi1 libfftw3-bin libfftw3-dev libfftw3-doc ncurses-bin 

libncurses5 libncurses5-dev libncurses5-dbg libfontconfig1-dev libxrender-dev 

libpulse-dev swig g++ automake autoconf libtool python-dev libfftw3-dev 

libcppunit-dev libboost-all-dev libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev 

python-wxgtk3.0 git-core libqt4-dev python-numpy ccache python-opengl 

libgsl-dev python-cheetah python-mako python-lxml doxygen qt4-default 

qt4-dev-tools libusb-1.0-0-dev libqwt5-qt4-dev libqwtplot3d-qt4-dev 

pyqt4-dev-tools python-qwt5-qt4 cmake git-core wget libxi-dev 

gtk2-engines-pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev 

libasound2-dev python-gtk2 libzmq-dev libzmq1 python-requests python-sphinx 

libcomedi-dev python-zmq python-setuptools 

● ~ cd $HOME 

● ~ mkdir workarea 

● ~ cd workarea 

● ~ git clone https://github.com/EttusResearch/uhd 

● ~ cd uhd 

● ~ git checkout release_003_010_300_000 

● ~ cd host 

● ~ mkdir build 

● ~ cd build 

● ~ cmake ../ 

● ~ make 

● ~ make test 

● ~ sudo make install 

● ~ sudo ldconfig 

● ~ sudo vim ~/.bashrc 

● Add the following lines to the end of the code 

i. export LD_LIBRARY_PATH=/usr/local/lib 

sudo uhd_images_downloader 

● Now go into BIOS and disable two settings: 

i. Secure Boot 

ii. Hyperthreading 

 



Running OpenAirInterface on the SDR Nodes 

Jargons used in OAI: eNB == 4G base station; UE == user equipment (mobile phone) 

1. Go to the OAI folder directory 

● cd openairinterface5gTest/ 

2. Source OAI path for environment build up 

● source oaienv 

3. cd cmake_targets/ 

4. Build dependencies and compile OAI c codes 

sudo ./build_oai -w USRP --noS1 --eNB -c 

a. If you are configuring the SDR as a UE, replace “eNB” with “UE” 

b. To see more options, add -h for help  

5. Bring up oai IP for connection setup 

a. source ../targets/bin/init_nas_nos1 eNB 

b. If you are configuring the SDR as a UE, replace “eNB” with “UE” 

6. Go to build directory  

● cd lte_noS1_build_oai/build/ 

7. To run the config file for eNB 

● sudo -E ./lte-softmodem-nos1 -O 

~/openairinterface5gTest/targets/PROJECTS/GENERIC-LTE-EPC/CONF/enb.tm1.2

5PRB.usrpb210.conf 

8. To run the config file for UE 

● sudo -E ./lte-uesoftmodem-nos1 -O -U --ue-scan-carrier --ue-txgain *insert 

desired value* --ue-rxgain *insert desired value* -r 25 *insert desired 

frequency* --ue-max power *insert desired power* 

● Note: TX and RX gain are capped at 125 while the power is capped at 10 

Configuring CPS nodes 

1. Open Code Composer Studio on the NUC8 node controller 

2. Set the Workspace to /home/Workspace1 and run 

3. Click on rfPacketTx and click on the config file shown below 



 

4. Click on Target Configuration on the top right of the config file 

5. Click on Texas Instruments XDS110 USB Debug Probe, you should now see a screen like 

below 

 

6. As shown in the previous picture, you can enter the serial number of the desire mote 

that you want to program 

7. Click Debug at the top of code composer studio as shown below 



 

8. When it is done debugging, hit resume and you have now successfully flashed the code 

9. Repeat steps 1-8 with rfPacketRx and insert a different serial number for step 6 

10. You now have two motes communicating through TI-RTOS 

 

  



Appendix II: Alternative Design 

Emulab Testbed Software 

During the design phase of the first semester, our plan was to write the resource scheduler and 

access control software ourselves. At the beginning of the second semester, our client advised 

us that testbed software already exists that would do most of that for us called Emulab. Other 

university testbeds such as Powder and PhantomNet have used Emulab and it is a great way to 

manage resources and experiment data. 

 

Unfortunately for us, Emulab is very involved to set up. It requires two servers and a whole lot 

of configuring. We began the second semester by installing Xen hypervisor on our server. This 

brought its own challenges as none of us had any experience with Type-1 hypervisors. We had 

networking issues such as bridging between guest virtual machines that took up a lot of our 

time to troubleshoot. Eventually we did have two virtual machines running at the same time. 

 

Another setback was that Emulab required FreeBSD rather than Linux. Again, none of us had 

any experience with FreeBSD and this brought new challenges. The package management 

system and filesystems were different than Linux. As time went by and troubleshooting got 

more and more complex, we found ourselves with just one or two weeks left. 

 

At this point, we had to make a decision. One option was to risk trying to troubleshoot our Xen 

network bridging issues, get comfortable with FreeBSD and installing Emulab from source, and 

then configure Emulab which came with more less-than-perfect installation instructions. The 

other option was to drop Emulab and do what we could in-house so that we’d have a working, 

if limited in features, testbed. 

 

We chose to stop work on Emulab, scrap Xen, and install Linux from scratch. With only about a 

week left before the project was due, we worked on installing and configuring all the necessary 

services on the server. We didn’t have time to implement a resource scheduler or dynamic 

access control. These will be issues that the next senior design team will have to work out. 

 

 


